Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08	Rev 1.10	E <i>C</i>	02/08/21
-------	----------	------------	----------

CONTINUOUS INTERNAL EVALUATION- 3

Dept:EC	Sem / Div:IV A	Sub:Analog Circuits	S Code:18EC42			
Date:04/08/2021	Time: 3:00-4:30 pm	Max Marks: 50	Elective:N			
Note: Answer any 2 full questions, choosing one full question from each part.						

-	-	

Q	Questions	Marks	RBT	COs		
PART A						
1 a	Explain the working of a second order high pass Butterworth filter with a neat circuit diagram and frequency response. Write the relevant design equations.	9	L2	CO4		
ŀ	For an inverting Schmitt Trigger circuit $R_1 = 15K\Omega$; $R_2 = 1K\Omega$ and $V_{in} = 10V_{p-pp}$ sine wave. The saturation voltages are \pm 14V and $V_{ref} = 2$ V. i) Determine the threshold voltages V_{ut} and V_{lt} . ii) Find the value of Hysteresis voltage V_{hy} .	6	L2	CO4		
	Derive the expression for closed loop voltage gain, input and output resistance of inverting Amplifier. The opamp 741C is connected as an inverting amplifier with R1=1k Ω and RF=4.7k Ω . Compute the closed loop parameters: AF, RIF, ROF, fF Given A=400000, Ri=33M Ω and RO=60 Ω ; supply voltages are \pm 13V; Max output voltage swing = \pm 13V, Unity gain bandwidth = 0.6MHz .	10	L3	CO4		
2 a	What is an instrumentation amplifier? What are its applications? With a neat circuit diagram explain an instrumentation amplifier using a transducer bridge.	10	L2	CO4		
ŀ	Explain the operation of 4-bit R-2R DAC with neat circuit. For the R-2R DAC, with R=10k Ω and R _F =20k Ω and V _{REF} =5V, determine the output voltage when the inputs b0=b1=5V and b2=b3=0V	9	L3	CO4		
C	Explain the working of a Successive Approximation type of ADC.	6	L2	CO4		
	PART B					
3 a	Derive an Expression for the output of a inverting Summing amplifier with three inputs and averaging amplifier	10	L2	CO4		
l	Explain the operation of a monostable multivibrator with relevant diagrams and waveforms.	10	L2	CO4		
	Draw the circuit and waveforms for an inverting Schmitt Trigger using opamp, with relevant expressions.	5	L2	CO4		
	OR					
4 a	Explain the basic comparator circuit using an opamp. How can this circuit be used in an application as a zero crossing detector?	10	L2	CO4		
ł	Design an Astable Multivibrator using 555 timer having output frequency of 10KHz with a dutyCycle of 25%.	6	L3	CO4		
	Draw and Explain the circuit and frequency response of a wide band-pass filter.	9	L2	CO4		